
 

 
  

 
Oregon ALERT IIS 

 

 

 

HL7 Real Time Data Exchange 
 
 
 

Version 1.3 

 

 

Last Updated: June 11, 2012 

 

 

 

 

 

 

 

 

 

Note: HL7 2.4 in this document refers to the local (Oregon) 
implementation of the CDC HL7 2.3.1 (June 2006) Guide 

  



 

Page 2 of 19 

 

INTRODUCTION 3 

CHECKLIST FOR PROVIDER ORGANIZATIONS AND VENDORS ESTABLISHING REAL 
TIME DATA EXCHANGE 4 

SSL CERTIFICATE CREATION 6 

Generating a Key and Certificate Signing Request (CSR) 6 
Generating a Private Key and CSR using OpenSSL 6 

Step 1: Generate Private Key 6 
Step 2: Generate the CSR 6 
Step 3:  Send CSR to ALERT 7 
Step 4: Backup the private key 7 
Step 5:  Receiving Your Signed Certificate 7 

Generating a Private Key and CSR using Microsoft Windows 8 
Step 1: Creating the Private Key and CSR 8 

SSL TRUST STORES IN A WEB SERVICES CONTEXT 9 

INTRODUCTION TO SOAP WEB SERVICES IN ALERT IIS 12 

For More Information 13 

GETTING THE WSDL 14 

APPENDIX A: WSDL AND XSD FILE CONTENTS 16 
 

 

 



 

Page 3 of 19 

 

Introduction 
Thank you for your interest in Health Level Seven (HL7) electronic data exchange with 

Oregon ALERT IIS.  

HL7 real time data exchange with ALERT IIS is accomplished by sending via SOAP web 

services. For information about sending HL7 batch, please contact the ALERT Help Desk. 

The first step for a clinic and/or their vendor is to review the ALERT IIS HL7 Implementation 

Guide. It is important to understand the local HL7 specifications to ensure that your EHR 

system can prepare and send HL7 messages that meet Oregon ALERT’s requirements.  

Once you have reviewed the ALERT IIS HL7 Implementation Guide and the following data 

exchange specifications, contact the ALERT Help Desk to begin the process of setting up a 

data exchange relationship with ALERT IIS. Once a site has communicated to the Help Desk 

that they are interested in setting up HL7 real time data exchange with ALERT, a data 

exchange specialist will follow up. 

The ALERT IIS HL7 Implementation Guide can be downloaded from our website: 

https://www.alertiis.org/docs/hl7_24_gts.pdf  

For questions or more information: 

ALERT Help Desk 

1-800-980-9431 

alertiis@state.or.us  

 

 

 

https://www.alertiis.org/docs/hl7_24_gts.pdf
https://www.alertiis.org/docs/hl7_24_gts.pdf
mailto:alertiis@state.or.us


 

Page 4 of 19 

 

Checklist for Provider Organizations and Vendors Establishing Real Time Data 

Exchange 

1) Planning & Design 

 Review ALERT IIS HL7 2.4 Implementation Guide. Please note there are a number of 

Oregon-specific HL7 requirements. Two of those are: 

 Clinic level code (AL#, provided by ALERT) should be sent in MSH-4, and 

RXA-11 (if you plan to use the inventory module). 

 Vaccine eligibility code (for VFC program or other state supplied vaccine) 

must be sent at the dose level (in an OBX segment), rather than at the 

patient visit level.   

 Review current list of sites in ALERT IIS associated with your organization. 

Add/modify as needed. This list will be provided by the ALERT Data Exchange 

Coordinator.  

 Test plans: begin writing test plans and set up test cases/patients in your test 

environment. 

2) Development 

 Per the ALERT IIS HL7 2.4 Implementation Guide, map your EHR system codes to 

the specifications described for ALERT IIS. There are various tools available online 

for validating standard HL7 message format, such as https://phinmqf.cdc.gov/.  

 Develop VXU message format, per the ALERT IIS specifications. 

 Develop VXQ message format, per the ALERT IIS specifications. In planning for bi-

directional query functionality, please consider the following questions in your 

planning and development: 

 Will records be stored permanently?  

 If storing, will returned records be integrated into the EHR immunization 

history? 

 Will the EHR automatically query for records, or will the user initiate the 

query? 

 How will the returned records be displayed to the user? 

 Error Message and Response File Management. Please consider the following 

questions in your planning and development:  

 How will the EHR manage error messages? 

 How will error messages be displayed to the user? 

 Who will review error messages?  

 How will providers be able to correct errors and re-submit?  

 If there is web service downtime for maintenance or outage, what is the plan 

for how records will be re-sent?  

  

https://www.alertiis.org/docs/hl7_24_gts.pdf
https://phinmqf.cdc.gov/


 

Page 5 of 19 

 

3) Check In Call with ALERT IIS Data Exchange Team  

 The purpose of this call is to review design and development steps, determine 

readiness and review next steps for testing and deployment. Please contact 

Tracy Little at tracy.c.little@state.or.us  

4) Testing 

 Install SSL Certificate for access to ALERT UAT (ALERT IIS test environment), from 

your test environment. See detailed instructions in SSL Certificate Creation v1.3.  

 Install SOAP web services WSDL (web services definition language) for UAT 

environment. The WSDL file will be provided by the ALERT IIS Data Exchange 

Coordinator.  

 Submit one day, then one month of immunization data to the ALERT IIS UAT 

environment via the web service. 

 Conduct internal QA and validation of test messages. Suggested review criteria are 

as follows: 

 Find out how many successful, partially successful, and failed VXU messages 

are sent. 

 Identify major issues in failed and partially successfully messages; submit 

another set (month) of data until issues are resolved. Repeat this step until 

nearly all messages are successful.  

 Check the User Interface to ensure that the immunizations reported in 

the messages were added to the patients’ records.  

 Check the messages and UI to ensure that historical immunizations 

and recommended fields are being sent. 

 Run the percentage of each vaccine and group reported during the 

one-month test. Ensure that percentages do not vary greatly from the 

amount of reporting we normally expect.  

 Review results of testing with ALERT IIS Data Exchange Coordinator. Schedule Go-

Live. 

5) Deployment 

 Install SSL Certificate for access to ALERT IIS production site, from your production 

environment. The same certificate will be used for UAT and production; follow the 

same steps completed earlier while connecting to the UAT environment.  

 Install the SOAP web services WSDL (web services definition language) for 

Production environment.  

 Coordinate date for go-live with ALERT data exchange coordinator. If currently 

sending electronic data to ALERT plans must be made to suspend current submission 

by go-live date. 

 Validate data going to ALERT IIS production site and review with ALERT IIS Data 

Exchange Coordinator.   

 

  

mailto:tracy.c.little@state.or.us


 

Page 6 of 19 

 

SSL Certificate Creation 
The Secure Sockets Layer (SSL) is a commonly-used protocol for managing the security of a 

message transmission on the Internet.  SSL client and server certificates are used as an 

added security feature for transmitting data for Alert IIS web services transactions.  We 

require that both the client and server install certificates that have been generated by the 

HP Immunization Services personnel.  To accomplish this, you must first create a private 

key for each machine that will be accessing the Alert IIS web services machine.  This 

private key is then used to create a Certificate Signing Request (CSR) which will be sent to 

HP.  HP will create the SSL certificate which will be returned to you for installation on your 

client machine (“client” in this instance will most likely be the server that communicates 

with the Alert IIS web services servers). 

 

Generating a Key and Certificate Signing Request (CSR) 
To generate a CSR, a key pair must be created for the server. These two items are a digital 

certificate key pair and cannot be separated. If the public/private key file is lost or changed 

before the SSL certificate is installed, the SSL certificate will need to be re-issued. The 

private key, CSR, and certificate must all match in order for the installation to be successful. 

The following sequence of commands will generate a 2048 bit key using the OpenSSL 

software.  Below that are instructions for creating the CSR in a Windows environment.  We 

recommended the use of the domain name or IP address that will be used for the certificate 

as the prefix of the filenames. Also make sure that any existing keys and CSR's are NOT 

overwritten. 

Generating a Private Key and CSR using OpenSSL 

Step 1: Generate Private Key 
Type the following command at the prompt: 

openssl genrsa –out my.server.com.key 2048 

This command generates a 2048 bit RSA private key and stores it in the file, 

my.server.com.key 

Note: For all SSL certificates, the CSR key bit length must be 2048. 

Step 2: Generate the CSR 
Type the following command at the prompt: 

openssl req –new –key my.server.com.key –out my.server.com.csr  

This command will prompt for the following attributes of the certificate: 

 

Field 

Required / 

Optional Description 

Country Name R 
Use the two-letter code without punctuation for country. 

Example: US or CA 

State or Province R 

Spell out the state completely; do not abbreviate the state or 

province name. 

Example: Oregon 

Locality or City R 
The Locality field is the city or town name; do not abbreviate. 

(Example: Saint Louis, not St. Louis) 

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212839,00.html


 

Page 7 of 19 

 

Company R 

If the company or department has an &, @, or any other 

symbol using the shift key in its name, the symbol must be 

spelled out or omitted. 

Example: XY & Z Corporation would be XYZ Corporation or XY 

and Z Corporation. 

Organizational 

Unit 
O 

Can be used to help identify certificates registered to an 

organization. The Organizational Unit (OU) field is the name 

of the department or organization unit making the request. 

To skip the OU field, press Enter on the keyboard. 

Common Name R 
The Common Name is the Host + Domain Name. It looks like 

"my.server.com". 

 

Certificates can only be used on Web servers using the Common Name specified during 

enrollment. For example, a certificate for the domain "server.com" will receive a warning if 

accessing a site named "www.server.com" or "secure.server.com", because 

"www.server.com" and "secure.server.com" are different from "server.com". 

Note:  Please do not enter an email address, challenge password or optional company name 

when generating the CSR. 

A public/private key pair has now been created. The private key (my.server.com.key) is 

stored locally on the server machine and is used for decryption (DON’T LOSE IT). The public 

portion, in the form of a Certificate Signing Request (my.server.com.csr), will be for 

certificate enrollment. 

Step 3:  Send CSR to ALERT 
The CSR is an ASCII text file that can be attached to an email and should be sent to the 

ALERT IIS Data Exchange Coordinator.  Please send your CSR to: 

Tracy Little (tracy.c.little@state.or.us) 

Step 4: Backup the private key 
It is recommended that you back-up the .key file. A good choice is to create a copy of this 

file onto a diskette or other removable media. While backing up the private key is not 

required, having one will be helpful in the instance of server failure. 

Step 5:  Receiving Your Signed Certificate 
Once HP is done processing your CSR, you will receive the signed certificate as an email 

attachment.  This file must be installed in the Trusted Store of the computer for which it 

was generated.  The instructions for this will vary depending on your environment.  A good 

source of reference for this information is Google (search for: importing trusted root 

certificates). Two common trusted stores are Public-Key Cryptography Standards #12 

(PKCS#12 or PFX) and Java Key Store (JKS). 

 

Join your private key with the signed certificate and certificate authority files mailed by HP, 

so the browser and OS can use it.   

 

Here is an example of creating a .pfx file using openssl. 

Openssl pkcs12 –export –out www.example.com.pfx –inkey www.example.com.key –

in www.example.com.crt –certfile cacert.crt 

Here is what the example file names represent: 

www.example.com.pfx  = this will be the output file – which you’ll install into 

Windows 7 so IE can use it, etc 

mailto:tracy.c.little@state.or.us
http://www.example.com.pfx/
http://www.example.com.key/
http://www.example.com.crt/
http://www.example.com.pfx/


 

Page 8 of 19 

 

www.example.com.key = this is the key that was generated by step 1 

www.example.com.crt = this is the signed certificate provided in response to 

your CSR 

cacert.crt = this is the CA (Certificate Authority) file which was provided, this is 

needed by openssl to verify we truly signed the first file. 

 

Generating a Private Key and CSR using Microsoft Windows 

Step 1: Creating the Private Key and CSR 
1. Open the Microsoft Management Console (MMC).  On the Start menu, click Run, 

type MMC, and then click OK.  MMC opens with an empty console. 

2. Right-click the default Web site, click New, and then click Site. Create a new site 

and give it a temporary name.  

3. Right-click the new site, click Properties, click the Directory Security tab, and 

then click Server certificate. 

4. Select Create new certificate and follow the wizard to create a new CSR. Use the 

information from the OpenSSL instructions above in Step 2, when filling out the 

request. When prompted, select Prepare the request now but send it later. 

5. Use the CSR that you just created to request a new certificate from HP. 

See the OpenSSL instructions Steps 3, 4, and 5, above, to finish the process. 

 

  

http://www.example.com.key/
http://www.example.com.crt/


 

Page 9 of 19 

 

SSL Trust Stores in a Web Services Context 
 

Keystores 

A keystore is a database of private keys and their associated X.509 certificate chains 

authenticating the corresponding public keys.  A key is a piece of information that controls 

the operation of a cryptographic algorithm.  For example, in encryption, a key specifies the 

particular transformation of plain text into ciphertext, or vice versa during decryption.  Keys 

are used in digital signatures for authentication. 

  

Truststores 

The truststore contains the Certificate Authority (CA) certificates and the certificate(s) of the 

other party to which this entity intends to send encrypted (confidential) data.  This file must 

contain the public key certificates of the CA as well as the client's public key certificate. 

 
Alert IIS Web Services Client Operations 

For all provider servers which will be accessing the ALERT IIS Web Service, a Truststore 

needs to be established.  The Truststore should contain the signed certificate you received 

from HP plus the CA certificate(s) from the Web Services server. 

   

Disclaimer:  The following screen shots were taken using Internet Explorer 7 and may 

differ depending upon the browser you are utilizing. 

The CA certificate(s) can be acquired, by pointing your web browser at the ALERT IIS Web 

Services site (e.g., using a WSDL request). 

 

 

 
Notice:  You may receive the following notification “There is a problem with this website’s 

security certificate.”  If you do receive this message, please, click the “Continue to this 

website (not recommended).” link. 

 
 

Right click on the browser's lock icon  to display the certificate.  If the lock icon  is not 

present you may see , click on Certificate Error. 

 



 

Page 10 of 19 

 

 

Get information about Secure Sockets Layer (SSL) certificates 

 

When you connect to a website, Internet Explorer uses a secure connection that uses 

Secure Sockets Layer (SSL) technology to encrypt the transaction. The encryption is based 

on a certificate that provides Internet Explorer with the information it needs to communicate 

securely with the website. Certificates also identify the website and owner or. 

You can view a certificate to validate the identity of a website before providing information. 

 

To validate the identity of a website: 

1. Open Internet Explorer 

2. Go to the website that you want to validate. 

3. Click the Lock icon , which is located to the right of the Address bar. 

 

Basic certificate information (for example, the name and address of the website 

owner and information about who certified the site) will be displayed. To see 

additional information, click View Certificates. 

 

Note: 

 

If a lock icon does not appear in the Address bar in step 3 above, the connection is not 

secure. 

 

 

You should now see a notification “Untrusted Certificate”.  Click on “View certificates” 

 
 

You should now be presented with the Certificate dialogue box. 

mshelp://windows/?id=da8256b8-e348-4dc8-9fb0-b8ecb5b037af#gtmt_encryption1_def
mshelp://windows/?id=fdc42cc7-7450-41f7-8b6b-43d0751b0320#gtmt_certificate_def


 

Page 11 of 19 

 

 
 

 

Depending on the browser model and version which you are using, you will now be able to 

import the CA certificates into your machine's truststore, or export them for importing into a 

file by openssl. 

 

Whether you need to import the machine's truststore or must create a truststore file is 

determined by the type of Web Service Client you are creating and should be explained in 

your documentation for that system. 

 
Please note: The IP address noted in the picture above for Issued to and Issued by is in name only. Be 
careful not mistake the Issuers name for the IP address of the current WSDL.  

 

 

 

 

 



 

Page 12 of 19 

 

Introduction to SOAP Web Services in ALERT IIS 
A Web Service is a standards-based method of allowing one computer to access functions in 

another computer through the Internet. The functions are accessed through the same ports 

used by Internet browsers, making them very likely to be allowed through firewalls. 

  

Security is implemented by installing public and private key pairs (known as X.509 

certificates) on both the ALERT IIS Web Services Server and the Electronic Health Record 

(EHR) computer requesting the information. Using this technique, both the client and server 

are identified to each other to establish trust and the communication is encrypted. 

 

 
 
ALERT IIS supports the following functions through Web Services: 

 

1. FindHistory, used to query the IIS for immunization data 

2. UpdateHistory, used to send information about an administered vaccine 

 

Web Service functions are called using Simple Object Access Protocol (SOAP) requests, 

which are formatted as XML (eXtensible Markup Language) messages. 

 

Each SOAP request is made up of the following elements: 

 

1. The envelope, which identifies the message as a SOAP request 



 

Page 13 of 19 

 

2. The function name 

3. The parameters of the function call. In most cases, the parameters are individual 

pieces of data, such as First Name, Last Name, etc. For the IIS Web Services, there 

is a single parameter which contains an entire HL7-formatted message, wrapped in a 

CDATA section to keep it from being misinterpreted by the parser.  

 

Here is a simple VXU message sent to the UpdateHistory Web Service function. The pieces 

are numbered from the list above. 

 
(1) SOAP 
Envelope 
Start 

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" 
xmlns:vac="http://vaccination.org/"> 
 <soap:Header/> 
    <soap:Body> 

(2) 

Function 
and 

parameter 
Start 

       <vac:UpdateHistory> 

        <arg0> 

CDATA 
section 
Start 

<![CDATA[ 

(3) 

Parameter, 
the HL7 
message, 
segments 
vary 
depending 

on the 
function 

MSH|^~\&||AL9999||ALERTIIS^^^|20110201||VXU^V04|682299|P^|2.4^^|||ER  
PID|||79928^^^^PI|A5SMIT0071^^^^^|SMITH^MAY^^^^^^|JOHN^^^^^^^|20101212|F|||| 

RXA|0|999|20110201|20110101|^^^90701^DTP^CPT|0.5 

CDATA 

section End 

]]> 

(2) 
Function 
and 
parameter 

End 

      </arg0> 
       </vac:UpdateHistory> 

(1) SOAP 
Envelope 
End 

    </soap:Body> 
</soap:Envelope> 

 
The definitions of the functions are specified in the WSDL (Web Services Definition 

Language) file. Modern development environments (such as Java and .NET) can take the 

WSDL and turn it into a programming interface to simplify implementation. The WSDL can 

be supplied by the Oregon Immunization Department or retrieved from the server once the 

certificates are installed. 

 

For More Information 

http://www.w3schools.com/webservices/default.asp is a good source for information about 

Web Services. The Summary page includes links to information about WSDL and SOAP. 

 

http://www.w3.org/2003/05/soap-envelope
http://vaccination.org/
http://www.w3schools.com/webservices/default.asp


 

Page 14 of 19 

 

Getting the WSDL 

The WSDL (Web Services Definition Language, pronounced whiz-dul) is a method used to 
describe Web Services functions that can be accessed through the Internet from other 
computers. 
 
The contents of the WSDL and related XSD file are included in Appendix A, for reference. 
 
Using the WSDL file, modern development environments (such as Java and .NET) can turn the 
WSDL file into a programming interface to simplify implementation. 
 
The WSDL can be obtained in three ways: 
 

1. Retrieve it from the Web Service Server 
2. Get a copy from the Oregon Immunization Department 
3. Extract the UAT version from this document 

 
Method 1: Retrieve the WSDL from the Web Service Server 
 
Prerequisites: This method requires that you have already requested, received and installed the 
certificates to reach the Web Server with full authentication and encryption. 
 
This address can be used to retrieve the WSDL into a web browser or a development tool to 
generate a programming interface. The steps for working with the programming interface are 
beyond the scope of this documentation. 
 

1. Enter the appropriate address into the browser address bar or the development tool. 
 
UAT:  https://64.73.37.139/webservices/VaccinationBService?wsdl  
Production: https://soa.alertiis.org/webservices/VaccinationBService?wsdl 
 
If you leave off the trailing “?wsdl” you will get a page of endpoints, rather than the 
WSDL itself. 
 

2. The WSDL appears in the web browser and can be printed for reference. 
 

3. To get the related XSD file, do the same thing with this address. This will only be needed 
to view the files from a web browser, because most applications using a WSDL will 
automatically download and use the XSD file. 
 
UAT:  https:// 64.73.37.139/webservices/VaccinationBService?xsd=1 
Production: https://soa.alertiis.org/webservices/VaccinationBService?xsd=1 
 

4. The XSD appears in the web browser and can be printed for later reference. 
 

https://64.73.37.139/webservices/VaccinationBService?wsdl
https://soa.alertiis.org/webservices/VaccinationBService?wsdl
https://64.73.37.139/webservices/VaccinationBService?xsd=1
https://soa.alertiis.org/webservices/VaccinationBService?xsd=1


 

Page 15 of 19 

 

Method 2: Get a copy from the Oregon Immunization Department 
 
Prerequisites: None. 
 
Contact the ALERT Help Desk (alertiis@state.or.us) and request electronic copies of the WSDL 
file. This will provide the initial IIS-WSDL-Dev.xml and IIS-WSDL-Prod.xml files, which contain 
the Web Service Definitions. These could also be copied out of this document, below, and 
pasted into text files. 
 
Method 3: Extract the UAT version from this document 
 
Prerequisites: None. 
 

1. Highlight the lines in Appendix A (the WSDL section only) from 
<?xml version="1.0" encoding="UTF-8" ?>  

to  
</definitions> 

2. Copy the highlighted text to the clipboard with Control-C. 
3. Open up Notepad and paste the contents of the clipboard into the empty Notepad file. 
4. Verify the contents include all of the lines you highlighted in Step 1. 

 

mailto:alertiis@state.or.us


 

Page 16 of 19 

 

Appendix A: WSDL and XSD File Contents 

The following are the contents of the UAT version of the WSDL.  The Production WSDL is identical, except for the location tags which 
show the Web Service endpoint.  Specifically, “https://64.73.37.139” becomes “https://soa.alertiis.org” but the rest is identical.  
 
<?xml version="1.0" encoding="UTF-8" ?>  
<!--  Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI 2.2.1-hudson-28-.   --> 
<!--  Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI 2.2.1-hudson-28-.   --> 
<definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:wsp="http://www.w3.org/ns/ws-
policy" xmlns:wsp1_2="http://schemas.xmlsoap.org/ws/2004/09/policy" xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" 
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" xmlns:tns="http://vaccination.org/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://schemas.xmlsoap.org/wsdl/" targetNamespace="http://vaccination.org/" name="VaccinationBService"> 
 <wsp:Policy xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702" 
wsu:Id="WS2007FederationHttpBinding_IVaccinationServiceBindingPolicy"> 

  <sp:SignedEncryptedSupportingTokens> 
   <wsp:Policy> 
    <sp:UsernameToken sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient"> 

    <wsp:Policy> 
     <sp:WssUsernameToken10 />  
    </wsp:Policy> 
   </sp:UsernameToken> 
   </wsp:Policy> 
  </sp:SignedEncryptedSupportingTokens> 
  <sp:TransportBinding> 
   <wsp:Policy> 
    <sp:AlgorithmSuite> 
     <wsp:Policy> 
      <sp:Basic128 />  
     </wsp:Policy> 
    </sp:AlgorithmSuite> 
    <sp:IncludeTimestamp />  
    <sp:Layout> 
     <wsp:Policy> 
      <sp:Lax />  
     </wsp:Policy> 
    </sp:Layout> 
    <sp:TransportToken> 
     <wsp:Policy> 
      <sp:HttpsToken RequireClientCertificate="false" />  

     </wsp:Policy> 
    </sp:TransportToken> 
   </wsp:Policy> 
  </sp:TransportBinding> 
  <sp:Wss10 />  



 

Page 17 of 19 

 

  <wsam:Addressing />  
 </wsp:Policy> 
 <types> 
  <xsd:schema> 
   <xsd:import namespace="http://vaccination.org/" schemaLocation="https://64.73.37.139:443/webservices/VaccinationBService?xsd=1" />  

  </xsd:schema> 
 </types> 
 <message name="UpdateHistory"> 
  <part name="parameters" element="tns:UpdateHistory" />  

 </message> 
 <message name="UpdateHistoryResponse"> 
  <part name="parameters" element="tns:UpdateHistoryResponse" />  

 </message> 
 <message name="Exception"> 
  <part name="fault" element="tns:Exception" />  

 </message> 
 <message name="FindHistory"> 
  <part name="parameters" element="tns:FindHistory" />  

 </message> 
 <message name="FindHistoryResponse"> 
  <part name="parameters" element="tns:FindHistoryResponse" />  

 </message> 
 <portType name="IVaccinationService"> 
  <operation name="UpdateHistory"> 
   <input wsam:Action="http://vaccination.org/IVaccinationService/UpdateHistoryRequest" message="tns:UpdateHistory" />  
   <output wsam:Action="http://vaccination.org/IVaccinationService/UpdateHistoryResponse" message="tns:UpdateHistoryResponse" />  
   <fault message="tns:Exception" name="Exception" wsam:Action="http://vaccination.org/IVaccinationService/UpdateHistory/Fault/Exception" 

/>  
  </operation> 
  <operation name="FindHistory"> 
   <input wsam:Action="http://vaccination.org/IVaccinationService/FindHistoryRequest" message="tns:FindHistory" />  
   <output wsam:Action="http://vaccination.org/IVaccinationService/FindHistoryResponse" message="tns:FindHistoryResponse" />  
   <fault message="tns:Exception" name="Exception" wsam:Action="http://vaccination.org/IVaccinationService/FindHistory/Fault/Exception" />  

  </operation> 
 </portType> 
 <binding name="WS2007FederationHttpBinding_IVaccinationServiceBinding" type="tns:IVaccinationService"> 
  <wsp:PolicyReference URI="#WS2007FederationHttpBinding_IVaccinationServiceBindingPolicy" />  
  <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />  
  <operation name="UpdateHistory"> 

   <soap12:operation soapAction="" />  
   <input> 
    <soap12:body use="literal" />  

   </input> 
   <output> 
    <soap12:body use="literal" />  



 

Page 18 of 19 

 

   </output> 
   <fault name="Exception"> 
    <soap12:fault name="Exception" use="literal" />  

   </fault> 
  </operation> 
  <operation name="FindHistory"> 

   <soap12:operation soapAction="" />  
   <input> 
    <soap12:body use="literal" />  

   </input> 
   <output> 
    <soap12:body use="literal" />  

   </output> 
   <fault name="Exception"> 
    <soap12:fault name="Exception" use="literal" />  

   </fault> 
  </operation> 
 </binding> 
 <service name="VaccinationBService"> 
  <port name="WS2007FederationHttpBinding_IVaccinationService" binding="tns:WS2007FederationHttpBinding_IVaccinationServiceBinding"> 
   <soap12:address location="https://64.73.37.139:443/webservices/VaccinationBService" />  

  </port> 
 </service> 
  </definitions> 

 



 

Page 19 of 19 

 

The following are the contents of the UAT XSD file, which is retrieved automatically when the main WSDL is imported into a 
development tool. 
 
<?xml version="1.0" encoding="UTF-8" ?>  
<!--  Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI 2.2.1-hudson-28-.   --> 
<xs:schema xmlns:tns="http://vaccination.org/" xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0" targetNamespace="http://vaccination.org/"> 
 <xs:element name="Exception" type="tns:Exception" />  
 <xs:element name="FindHistory" type="tns:FindHistory" />  
 <xs:element name="FindHistoryResponse" type="tns:FindHistoryResponse" />  
 <xs:element name="UpdateHistory" type="tns:UpdateHistory" />  
 <xs:element name="UpdateHistoryResponse" type="tns:UpdateHistoryResponse" />  
 <xs:complexType name="UpdateHistory"> 

  <xs:sequence> 
   <xs:element name="arg0" type="xs:string" minOccurs="0" />  

  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="UpdateHistoryResponse"> 

  <xs:sequence> 
   <xs:element name="return" type="xs:string" minOccurs="0" />  

  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="Exception"> 

  <xs:sequence> 
   <xs:element name="message" type="xs:string" minOccurs="0" />  

  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="FindHistory"> 

  <xs:sequence> 
   <xs:element name="arg0" type="xs:string" minOccurs="0" />  

  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="FindHistoryResponse"> 

  <xs:sequence> 
   <xs:element name="return" type="xs:string" minOccurs="0" />  

  </xs:sequence> 
 </xs:complexType> 
</xs:schema> 

 


